Influence of adhesive rough surface contact on microswitches
نویسندگان
چکیده
Stiction is a major failure mode in microelectromechanical systems MEMS . Undesirable stiction, which results from contact between surfaces, threatens the reliability of MEMS severely as it breaks the actuation function of MEMS switches, for example. Although it may be possible to avoid stiction by increasing restoring forces using high spring constants, it follows that the actuation voltage has also to be increased significantly, which reduces the efficiency. In our research, an electrostatic-structural analysis is performed to estimate the proper design range of the equivalent spring constant, which is the main factor of restoring force in MEMS switches. The upper limit of equivalent spring constant is evaluated based on the initial gap width, the dielectric thickness, and the expected actuation voltage. The lower limit is assessed on the value of adhesive forces between the two contacting rough surfaces. The MEMS devices studied here are assumed to work in a dry environment. In these operating conditions only the van der Waals forces have to be considered for adhesion. A statistical model is used to simulate the rough surface, and the Maugis’s model is combined with Kim’s expansion to calculate adhesive forces. In the resulting model, the critical value of the spring stiffness depends on the material and surface properties, such as the elastic modulus, surface energy, and surface roughness. The aim of this research is to propose simple rules for design purposes. © 2009 American Institute of Physics. doi:10.1063/1.3260248
منابع مشابه
Influence of surface topography in electrostatic forces simulations for microassembly
Micro manipulations of objects between 10μm and 1mm by contact are often disturbed by adhesion between the handled object and the gripper. This is due to the presence of the surface forces which overcome gravity and prevent the release of the object. Capillary, electrostatic and van der Waals forces are the main surface forces responsible for this adhesive phenomenon. Several factors may influe...
متن کامل"Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force.
A rough surface can be a regular (engineered surface), a random (irregular rough surface), or an intermediate case (hierarchical rough surface). Whichever case is used for wettability, a truly superhydrophobic surface exhibits not only a high contact angle (>150 8) but also a low-contact-angle hysteresis (sliding angle). Quéré et al. theoretically described how contact-angle hysteresis generate...
متن کاملAdhesion of echinoderm tube feet to rough surfaces.
Echinoderms attach strongly and temporarily to the substratum by means of specialized organs, the podia or tube feet. The latter consist of a basal extensible cylinder, the stem, which bears an apical flattened disc. The disc repeatedly attaches to and detaches from the substratum through adhesive and de-adhesive secretions. In their activities, echinoderms have to cope with substrata of varyin...
متن کاملAn approximate model for the adhesive contact of rough viscoelastic surfaces.
Surface roughness is known to easily suppress the adhesion of elastic surfaces. Here, a simple model for the contact of viscoelastic rough surfaces with significant levels of adhesion is presented. This approach is derived from our previous model (Barthel, E.; Haiat, G. Langmuir 2002, 18, 9362) for the adhesive contact of viscoelastic spheres. For simplicity, a simple loading/unloading history ...
متن کاملAn easy-to-implement numerical simulation method for adhesive contact problems involving asymmetric adhesive contact
A novel numerical method to solve asymmetric adhesive contact problems in rectangular coordinates has been developed. Surface interaction is modelled using an interface potential, deformation is coupled using Green’s functions for a half space, and the resulting system of equations is solved by a relaxation technique. The method can handle arbitrary surface topography and properties. Compared w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009